Choose your screen resolution: Auto adjust 800x600 1024x768


Metoda inductiei complete
Luni, 24 Ianuarie 2011 18:04

METODA INDUCŢIEI COMPLETE

 

Profesor Ene Steluţa

 Şcoala Miron Costin, Galaţi

 

În geometrie, ca şi în domeniul multor altor ştiinţe, primele adevă­ruri matematice au fost obţinute pe calea observaţiei şi experienţei, deci pe calea inducţiei. La început, pe bază de experienţă prin observaţii şi măsurători, vechii egipteni au stabilit aproximativ raportul dintre lungimea cercului şi diametrul lui. Când numărul adevărurilor geometrice stabilite pe această cale a devenit mai mare, s-a putut observa între ele anumite legături, iar lucrările unor mari matematicieni din antichitate, ca: Tales, Pitagora, Euclid, Arhimede etc., care au folosit diferite forme de raţionament în obţinerea rezultatelor, au transformat geometria dintr-o ştiinţă empirică în una deductivă.

 

Inducţie vine de la un cuvânt de origine latină ,,inductionis”, care tradus înseamnă ,,aducere", „introducere", „dovedirea prin exem­ple", „orientare spre". În logică, prin inducţie se înţelege o formă de raţionament în care gândirea noastră pleacă de la particular la general, sau de la cunoştinţe cu un grad de generalitate mai mic la cunoştinţe cu un grad de gene­ralitate mai mare. În procesul generalizării prin raţionamentul inductiv întâlnim două cazuri.


Primul caz este acela în care obţinem o concluzie generală des­pre o anumită mulţime de obiecte de acelaşi fel pe baza cercetărilor tuturor elementelor ei. De exemplu, în geometria plană pentru de­monstrarea teoremei - ,,măsura unui unghi înscris într-un cerc este egală cu jumătatea măsurii arcului cuprins între laturile sale” – se procedează astfel: mulţimea unghiurilor înscrise în cerc se împarte în trei clase, singurele posibile :

a) unghiuri înscrise în care o latură este diametrul cercului şi cealaltă o coardă;

b) unghiuri înscrise cu laturile situate de aceeaşi parte a centrului cercului;

c) unghiuri înscrise în care laturile sunt coarde situate de o parte şi de alta a centrului cercului.

Se demonstrează teorema pentru fiecare din aceste clase de unghiuri, se însumează rezultatele obţinute într-un singur tot, obţinându-se o concluzie generală.

Acest fel de raţionament se numeşte „inducţie completă". El nu trebuie confundat cu metoda „inducţiei complete", care se mai numeşte şi „inducţia matematică", despre care ştim că este o formă raţionamentului deductiv.

Al doilea caz de generalizare pe cale inductivă este acela în care concluzia despre o clasă de obiecte se obţine pe baza studiului care nu cuprinde toate obiectele clasei care se cercetează, acest fel de raţionament se numeşte inducţie necompletă. În matematică sunt cazuri când inducţia necompletă duce la generalizări greşite.

Raţionamentul inductiv este folosit mult de gândirea omenească pentru descoperirea legilor ştiinţifice, în elaborarea ipotezelor ştiinţifice etc.

În geometrie, inducţia o întâlnim sub două forme: ca metodă de cercetare şi ca metodă de demonstraţie.

Inducţia ca metodă de cercetare constă în faptul că prin observaţie şi experienţă se pot formula anumite ipoteze referitoare la unele proprietăţi ale figurilor geometrice, iar ca aceste proprietăţi probabile să devină adevăruri matematice trebuie demonstrate. Ca metodă de demonstraţie, inducţia este cunoscută sub numele de „metoda inducţiei matematice".

La baza raţionamentului inducţiei matematice stă axioma a cincea a şirului natural al numerelor, care constituie şi conţinutul acestei metode.

,,Dacă o proprietate oarecare, legată de numerele naturale, este adevărată pentru un număr natural a şi dacă, presupunând că ea este adevărată pentru un număr oarecare n, este adevărată şi pentru numărul n +1 atunci este adevărată pentru toate numerele naturale începând de la a”.

În demonstraţie, metoda inducţiei matematice se efectuează în două etape.

I. Etapa de verificare

Se verifică dacă propoziţia enunţată este adevărată pentru numărul natural a.

II. Etapa de demonstraţie

Aceasta constă în a arăta că, presupunând adevărată propoziţia enunţată pentru numărul n  a, atunci ea este adevărată şi pentru numărul n + 1.

Pentru obţinerea concluziilor juste este necesar ca ambele etape să fie aplicate.

Metoda inducţiei matematice poate fi aplicată atât în problemele de calcul cât şi în problemele de demonstraţie.

 

Bibliografie

Gh. A. Chiţei, Metode pentru rezolvarea problemelor de geometrie, EDP, Bucureşti, 1969

 

 

Ultima actualizare în Miercuri, 02 Februarie 2011 10:08
 

Revista cu ISSN

Lecturi obligatorii pentru clasa a VI-a

Lecturi obligatorii pentru clasa a VI-a   Literatura română *** Toma Alimos *** Novac si corbul Octavian Goga Poezii( selectiv) Grigore Alexandrescu Fabule( selectiv) George Cosbuc Poezii( selectiv) V. Alecsandri Pasteluri Mihai Eminescu Poezii Tudor Arghezi Cărticică de seară, Ce-ai cu mine, vântule? I. L. Caragiale Momente şi schiţe Ion Creanga Prostia...

Read more

ritmicitatea citirii

                                                 RITMICITATEA CITIRII                                                    (studiu de cercetare pedagogică)     Prof. înv. primar Dobrea Monica Şcoala cu cls. I-VIII „Înv. N. Pâslaru” Caşin, jud. Bacău             „Nu este alta mai frumoasă şi mai de folos...

Read more

Trecere in revista a textelor semnificat…

PARTEA III Trecere în revistă a textelor semnificative SF pentru copii şi adolescenţi   Introducere Toţi partenerii în proiect au fost rugaţi să selecteze 10-20 de texte SF pentru copii şi adolescenţi care au...

Read more

Peste 100.000 de elevi participa anul ac…

Bucuresti, 10 octombrie 2011: Programul este  implementat de Junior Achievement Romania (JAR) in parteneriat cu Ministerul Educatiei, Cercetarii, Tineretului si Sportului, iar din anul 2000 pana astazi, peste 1.500.000 de...

Read more

Organizarea si desfasurarea evaluarii na…

Organizarea si desfasurarea evaluarii nationale pentru anul 2014   Iata Ordinul privind organizarea si desfasurarea evaluarii nationale pentru absolventii clasei a VIII-a in anul scolar 2013-2014.   In baza prevederilor art. 94, alin....

Read more

Obiceiuri ale meglenoromanilor

OBICEIURI ALE MEGLENOROMÂNILOR   Prof.  Ida Iuliana Şcoala Generală Nr. 3 Zărneşti, Braşov   Articolul prezintă câteva obiceiuri ale comunității meglenoromâne din comuna Cerna, județul Tulcea. Acestea sunt aduse în atenția noastră de un grup...

Read more

Parteneriatele educationale modalitati d…

PARTENERIATELE EDUCAŢIONALE MODALITĂŢI DE COMUNICARE ÎNTRE ŞCOALĂ ŞI COMUNITATE   Ştefănescu Adreana profesor psihopedagog, Centrul de Resurse şi Asistenţă Educaţională Speranţa Timişoara   Rezumat: Articolul surprinde aspecte legate de importanţa încheierii unui parteneriat educaţional precum...

Read more

Scurta privire asupra invatamantului rom…

SCURTĂ PRIVIRE ASUPRA ÎNVĂŢĂMÂNTULUI ROMÂNESC DE AZI ŞI DE MÂINE profesor Moise Iuliana Daniela Liceul cu Program Sportiv „I. B. Soter”, Buzău, jud. Buzău Orice reformă, oricât de...

Read more